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Executive Summary 

Summary of the Most Important Results, Conclusions, and Future Directions 

During the three years of this grant, conclusions have been reached that are important 
for the future of semiconductor cavity QED utilizing photonic crystal nanocavities. When 
this grant began, we expected that we would be able to get much higher Qs than the 
6000 in our original publication in Nature at the end of 2004 [Yoshie et al. 2004]. 
Consequently we planned to purchase the best available detectors for 1200 nm and use 
them to study photon statistics. Even though we found cavities with Qs up to 20,000 on 
the low energy tail of the quantum dot (QD) ensemble distribution [Hendrickson et al. 
2005a,b and 2006a,b], we did not find any SQDs giving strong coupling in spite of 
developing a new way of scanning the cavity mode by condensation of xenon or 
nitrogen while keeping the QD cold to minimize dephasing [Mosor et al. 2005], We 
concluded that working with self-assembled InAs QDs at the long wavelength limit of 
their growth range might not be giving suitable dots for strong coupling. We speculated 
that by growing dots with a shorter wavelength ensemble peak, one could work on the 
long wavelength edge with standard dots or reduce the density and work near the peak. 
An additional advantage would be that Si detectors work much better at 900 nm than 
InGaAs detectors work at 1200 nm. We grew and characterized almost 30 QD samples 
for the 900-1000 nm range, ten of them with an AIGaAs sacrificial layer and GaAs slab 
designed for photonic crystal slab nanocavity fabrication. We grew very good QDs as 
judged by a) the peak wavelength of the ensemble PL (915-1020 nm), b) the density of 
surface dots (200 down to just a few per square micron by AFM), c) the ensemble 
radiative lifetime (700 ps by streak camera following ps excitation [Sweet et al. 2007]), 
d) strong Purcell cavity enhanced emission, and e) Hanbury Brown Twiss 
measurements of the second order correlation function of strongly enhanced SQDs 
excited nonresonantly both cw and pulsed [Richards et al. 2007; Gibbs & Khitrova 2007; 
Gibbs 2007 & 2008a,b; Khitrova et al. 2007; Khitrova 2008a,b,c]. The cavity fabrication 
was performed by Uday Khankhoje in the Caltech group of Axel Scherer, since Tomo 
Yoshie graduated and became an Assistant Professor at Duke shortly after our Nature 
article. Uday gradually came up to speed, hampered by building construction, new 
instrumentation, and equipment breakdowns. His cavity Q gradually increased up to as 
high as 9000 on our 900-1000 nm samples. 

Several other groups continued their quest for strong coupling using photonic 
crystal nanocavities which have one big advantage: the smallest mode volume and 
hence the highest vacuum field and thus the largest vacuum Rabi splitting for the same 
dipole moment [Khitrova et al. 2006]. However, it was not until 2007 that first the group 
of Imamoglu [Hennessy et al. 2007] and then the group of Vuckovic [Englund et al. 
2007)] reported strong coupling. Both succeeded in seeing strong coupling at short 
wavelengths (925-950 nm) with almost the same splitting to linewidth ratio as our 2004 
Nature article. Hennessey et al. fabricated a photonic crystal nanocavity around a good 
isolated SQD previously identified. Englund et al. demonstrated strong coupling in 
reflectivity rather than PL as we and others used before. These were important 
advances, but it is unlikely that we could have published either in Nature having 
published there the much more important first observation. 



The highest Q reported by the group of Forchel, which has obtained Qs of 
150,000 for micropillar cavities, is 9,000 [Sunner et al. 2008]. The highest Qs reported 
by the groups of Imamoglu and Vuckovic have been under 10,000 in all but one case 
which reached 20,000 [Fushman et al. 2008]. Private communication suggests that the 
latter involved surface passivation. That Uday's fabrication technique approaches that of 
Tomo Yoshie is evidenced by his obtaining Qs as high as 25,000 at 1200 nm on the 
same MBE sample used for our Nature strong coupling. The fact that after at least five 
years of trying, only one of the best etching groups in the world has succeeded in 
obtaining a Q exceeding 10,000 at 915 nm using a GaAs slab strongly suggests that 
there is a fabrication limitation that is not likely to be overcome. Since scattering losses 
scale as the inverse fourth power of the wavelength, they are reduced by a factor of 3 
by increasing the wavelength from 915 to 1200 nm. Moving from 1200 to 1500 nm 
would reduce them by another factor of 2.5. Rather than go back to 1200 nm which we 
investigated thoroughly, this reasoning points to going to 1500-1600 nm. This goal 
involves new challenges, namely growing suitable QDs and fabricating nanocavities 
with an Alo.4slno.52As sacrificial layer grown latticed matched on an InP substrate. 

As a first step, we have grown InAs QDs that photoluminesce in the 1400-1500 
nm range at low temperature (HSG4); see Fig.1. The growth parameters were guided 
by the results reported in [Enzmann et al. 2007]. 
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Fig. 1 Photoluminescence spectrum of an ensemble of QDs in a single 
layer excited cw weakly at 780 nm. 

Whereas the results of our experiments over the last three years are driving us 
toward 1500 nm for our strong coupling nanocavities, the group of Martin Wegener in 
Karlsruhe has independently concluded that 1500 nm is the shortest wavelength for 
which it is able to fabricate good split-ring resonators. Such metallic devices are 
inherently quite lossy, so that any applications will depend upon fabricating them on top 
of a material that can supply gain to compensate for these losses. We are collaborating 
with him to evaluate the use of quantum wells and quantum dots to provide this gain. 
Since the evanescent tail of the plasmonic resonance decays within 50 nm into the 
GaAs, the gain material must be grown close to the surface. In addition to the QDs 
above, we have grown two SQW samples and one with three QWs; the layer structure 
of the latter (HSG3) is shown in Fig.2. 
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Fig.2 Layer structure of sample HSG3 consisting of three GalnAs QWs 
between AllnAs barriers grown by MBE on an InP substrate. 

The PL spectra from the three-QW sample have been studied as a function of 
excitation power both at low and at room temperature; see Fig.3. The intensity of the PL 
increases linearly with increased pump power. No measurements of gain have been 
made yet. 
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Fig.3 Normalized photoluminescence from three-QW sample HSG3 at 
(left) 10 K and at (right) 300 K. Note the good overlap with the 1500-nm 
target wavelength for split-ring resonator gain at room temperature. 



One of the major challenges in the emerging field of photonic metamaterials 
[Shalaev 2007; Soukoulis et al. 2007] lies in significantly reducing or compensating the 
losses. For example, the record-high figure of merit of FOM = 3 of the negative-index 
metamaterial operating around 1.4-um wavelength reported in [Dolling et al. 2006] still 
translates into an effective absorption coefficient of a = 3x104 cm"1 - which is even 
larger than the band-to-band absorption of typical direct-gap semiconductors such as, 
e.g. GaAs (there, a = 104 cm"1). Thus, at first sight, it seems hopeless to compensate 
that level of absorption by gain. Yet, an interesting recent theoretical publication 
[Zheludev et al. 2008] shows that it is not the bulk gain coefficient that matters but rather 
the effective gain coefficient of the combined system. Due to pronounced local-field 
enhancement effects in the spatial vicinity of the metallic nanostructure (e.g. the split- 
ring resonator illustrated in Fig.2, the effective gain coefficient can be substantially 
larger than its bulk counterpart). A gold (Au) split-ring resonator of the dimensions given 
in Fig.2 has an optical resonance close to 1500 nm. This plasmonic oscillator is able to 
couple to other oscillators such as a semiconductor resonance. To better understand 
the interaction of a plasmonic and semiconductor resonance, one can employ a toy 
model in which the latter is approximated by a fermionic two-level system and the 
plasmonic resonance by a bosonic resonance [Wegener et al. 2008]. Some numerical 
results from the toy model are displayed in Fig.4. 
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Fig.4 Steady-state transmittance T versus wavelength A of a structure 
similar to Fig.2 according to the closed analytical solution of a simple toy 
model for fixed two-level-system occupation f = 0 (red), 0.25 (black), 0.5 
(blue), 0.75 (magenta), and 1 (green). The model parameters have been 
chosen to roughly match those of a typical array of split-ring resonators 
located on a 50-nm thin film composed of semiconductor quantum dots. 
An additional background dielectric constant of 13.8 accounts for the 
semiconductor gain film (e.g. InGaAs). 



Figure 4 shows the evolution of the transmittance spectra for increasing two- 
level-system upper-state occupation (f = 0, 0.25, 0.50, 0.75, and 1). Notably, the line 
width of the sharp transmittance maximum in Fig.4 goes to zero as the transmittance 
peak approaches and eventually exceeds unity. At this point, the gain effectively 
compensates the loss. Hence, we interpret this feature as being indicative for the onset 
of lasing (or "spasing" [Bergman & Stockman 2003] or "lasing spasing" [Zheludev et al. 
2008]). Note that the transmittance shoots out of the frame in Fig.4 and becomes 7= 25 
for f= 1. This simplified figure assumes that the 2LS linewidth is independent of f. 

The Pi's senior graduate student, Josh Hendrickson, after attending NOEKS9 in 
Klink (close to Berlin), visited the labs of Martin Wegener in Karlsruhe. Josh is spending 
September there working with Dr. Stephan Linden (Institut fur Nanotechnologie) to learn 
how to sputter on silica, spin on photoresist, e-beam write, and remove developed resist 
in order to produce silica masks for MBE growth of quantum dots in Tucson. He will also 
help in any way he can with the fabrication of split-ring resonators on our semiconductor 
gain samples and their testing via femtosecond pump/probe spectroscopy. Josh will 
concentrate on this project until he completes his Ph.D. next May; then he has accepted 
an offer to be a postdoc working jointly with Martin Wegener and the PI. 

During this period we grew 18 samples to study radiative coupling effects between 
QWs spaced, not periodically as usual, but instead nonperiodically with Fibonacci 
spacings. This structure still has a photonic stopband, but it is impossible for all of the 
QWs to be at nodes of the optical field as they are in the periodic case. Consequently, 
this Fibonacci 1D quasicrystal emits strong photoluminescence normal to the sample 
when the Bragg condition is satisfied. In contrast, a periodic 1D crystal has almost no 
photoluminescence under this condition. Two talks [Khitrova 2008b,c] were presented 
and an Optics Express [Hendrickson et al. 2008] was accepted on these nonperiodic 
structures. 
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